人工智能是我们如今非常关心的话题,可是我们更关心的是人工智能的机器学习,机器的自我学习会不会影响到未来人工智能与人类的关系呢?谷歌开始了更让人惊叹的举措——对人工智能系统进行开源。据国外媒体报道,谷歌于近日发布了全新人工智能系统TensorFlow。该系统可被用于语音识别或照片识别等多项机器深度学习领域。谷歌表示,TensorFlow将完全开源,可被运行于由数千台电脑组成的服务器集群或者单一智能手机之上。那么先了解一下人工智能系统TensorFlow是什么吧。 TensorFlow是谷歌研发的第二代人工智能学习系统,而第一代的DistBelief比这个要早好多年。 DistBelief诞生于2011年,它是谷歌推出的第一代内部深度学习结构,能够帮助谷歌利用自家的数据中心构建大型的神经网络,主要应用于人工智能的开发,比如语音识别、图片搜索等等。 但是,DistBelief本身存在一些技术上的短板,对谷歌的人工智能发展仍有一些限制。如谷歌高级研究员Jeff Dean和技术主管Rajat Monga表示,DistBelief关注的重心是神经网络,而且与谷歌内部的基础架构联系紧密。也就是说,该系统“几乎不可能与外部共享研究代码”,而且使用起来比较难设置。 而TensorFlow正是基于第一代DistBelief进行开发的,其命名来源于本身的运行原理,Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow即为张量从图象的一端流动到另一端——将复杂的数据结构传输至人工智能神经网中进行分析和处理。 相比较之下,作为谷歌第二代人工智能系统,TensorFlow更快、更智能化,也更加灵活,可以更加轻松地应用于谷歌的新产品以及支持技术研究。按某些标准计算,TensorFlow的运行速度相当于DistBelief的3倍。 此外,TensorFlow一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话、单个CPU / GPU到成百上千GPU卡组成的分布式系统。也就是说,任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation)。 [3DTV]http://v.youku.com/v_show/id_XMTM4NjkyMzUwMA==.html[/3DTV]
|