本帖最后由 王绍昶 于 2016-3-27 21:54 编辑
数学形态学一般是使用二值图像,进行边界提取,骨架提取,孔洞填充,角点提取,图像重建。基本的算法:膨胀腐蚀,开操作,闭操作,击中击不中变换,几种算法进行组合,就可以实现一些非常复杂的功能,而且逻辑严密。形态学可以用来解决抑制噪声、特征提取、边缘检测、图像分割、形状识别、纹理分析、图像恢复与重建、图像压缩等图像处理问题。 数学形态学的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。 数学形态学的应用可以简化图像数据,保持它们基本的形状特征,并除去不相干的结构。数学形态学的基本运算有4个:膨胀、腐蚀、开运算和闭运算,它们在二值图像中和灰度图像中各有特点。
1.二值形态学
数学形态学中二值图像的形态变换是一种针对集合的处理过程。其形态算子的实质是表达物体或形状的集合与结构元素间的相互作用,结构元素的形状就决定了这种运算所提取的信号的形状信息。形态学图像处理是在图像中移动一个结构元素,然后将结构元素与下面的二值图像进行交、并等集合运算。 二值形态学基本的形态运算是腐蚀和膨胀。在形态学中,结构元素是最重要最基本的概念。结构元素在形态变换中的作用相当于信号处理中的“滤波窗口”。用B(x)代表结构元素,对工作空间E中的每一点x,腐蚀和膨胀的定义为:
用B(x)对E进行腐蚀的结果就是把结构元素B平移后使B包含于E的所有点构成的集合。用B(x)对E进行膨胀的结果就是把结构元素B平移后使B与E的交集非空的点构成的集合。
先腐蚀后膨胀的过程称为开运算。它具有消除细小物体,在纤细处分离物体和平滑较大物体边界的作用。
先膨胀后腐蚀的过程称为闭运算。它具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。
可见,二值形态膨胀与腐蚀可转化为集合的逻辑运算,算法简单,适于对二值图像进行图像分割、细化、抽取骨架、边缘提取、形状分析。
图像膨胀前后对比图
2.灰度形态学
二值数学形态学可方便地推广到灰度图像空间。只是灰度数学形态学的运算对象不是集合,而是图像函数。以下设f(x,y)是输入图像,b(x,y)是结构元素。用结构元素b对输入图像y进行膨胀和腐蚀运算分别定义为:
对灰度图像的膨胀(或腐蚀)操作有两类效果: (1)如果结构元素的值都为正的,则输出图像会比输入图像亮(或暗); (2)根据输入图像中暗(或亮)细节的灰度值以及它们的形状相对于结构元素的关系,它们在运算中或被消减或被除掉。灰度数学形态学中开启和闭合运算的定义与在二值数学形态学中的定义一致。用b对f进行开启和闭合运算的定义为: 1.原图 2.二值化图形(只有黑白)3.腐蚀图像 4.膨胀图像 下边会继续总结和介绍关于机器视觉算法的相关技术。:)
|