大数据的不断丰富,计算速度的日益提高再加上人机交互的重大突破,三个条件都已经具备,弱AI向强AI的进化呼之欲出。 语音交互 让计算机会下棋、能搜索这些事情非常简单,并且已经实现,这些都是弱人工智能的东西;;让计算机听得懂,看得懂,能推理反馈,甚至理解人类感情和文化,这些属于强人工智能范畴。但是仅仅是想让计算机听得懂、看得懂,便困难重重了,而能够像人类一样,完成对于语言、图片信息的处理加工之后进行反馈,则是由弱AI到强AI突破的关键。那么疯狂科学家是怎么实现这一突破、让计算机拥有类似人类的“听觉”或者“视觉”的呢?我们以计算机识别图片稍加说明。 语音交互 在解决让计算机拥有识别图片能力的这个问题上,科学家们尝试了不同以往的“训练”计算机的方式——无监督学习。以前,科学家们告诉计算机“猫脸”的几个特征标签,计算机“按标索猫”,但是现在,科学家们改用无监督学习方式,仅下达“去找猫”的指令,让计算机自行确定标签。最后计算机将搜索结果反馈给科学家们。也就是说,人类“授机以渔”,告诉计算机的,只是如何找到标签的方法。“授机以渔”便是无监督学习,它教会计算机为某一目的自行处理大量无标记的数据,进而完成搜索。而计算机今天认识了猫,明天就会认识更多事物。 国内科大讯飞AI阵营 无监督学习技术的成功标志着深度学习也就此诞生。深度学习被视为是结束AI寒冬的破冰锤,它标志着机器人从弱人工智能到强人工智能进化。如果说大数据是人工智能这架火箭的燃料,那么深度学习能力就是发动机,发动机的动力强大与否将根本上决定人工智能这架火箭是否能顺利升空。2014年无监督学习方面成果斐然:Facebook脸部识别率的精确度达到97.25%,国内科大讯飞AI阵营的汤晓欧领导的计算机视觉研究组,达到的精确度更是高达98.52%。 语义和图片识别技术仅仅是深度学习领域所研究技术的冰山一角。2014年末,Google借递归神经网络(RNN),赋予了计算机更高级别的能力——逻辑推理的能力,让它可以用一句话对画面进行简单描述,这样计算机便具备了用有逻辑的语言描述图片中不同事物的能力。至此,拥有依靠概念为原点进行推理能力的机器人,比只会识别的机器人又迈上了一个更高的台阶。 虽然成绩斐然,但人工智能真正的冰山其实仍然沉在那些实验室里:科学家们最大的企图是让计算机理解人类的情感和文化。计算机科学家DonaldKnuth说: 人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上,还差得很远。 看来,让计算机听得懂,看得懂,会推理判断不足以满足疯狂科学家们的探索欲,他们期待有朝一日计算机能够变得像影片《人工智能》中的大卫一样,拥有可以理解人类情感和文化的能力。这样的强人工智能才是科学家们想要摘得的人工智能研究领域的皇冠。
互联网巨头在向强人工智能进军的路上,各家走的路线有所不同:数据处理速度方面,IBM凭借True North获得了比较高的关注度;Facebook则依托它丰富的人脸图像数据资源,在识别人脸方面取得了超越人脸的高精确度;而对于深度学习方法,Google、Facebook、百度和科大讯飞——这几个拥有了世界上少有的、研究深度学习科学家的公司——一直激烈地争夺着这块人工智能领域的高地。顺带一提,这一次人工智能大潮,可能也是首次中国科技势力和美国科技势力的齐头并进,而不是亦步亦趋。
|